Ed Segal

- 1. Which of the following are affine varieties? Justify your answers.
 - (a) $\{(t^2, t^3), t \in \mathbb{C}\} \subset \mathbb{A}^2$.
 - (b) The single point $(\pi, e^{\pi}) \in \mathbb{A}^2$.
 - (c) $\{|z|^2 = 1\} \subset \mathbb{A}^1$.
 - (d) $\{(z,w), |z|^2 + |w|^2 = 1\} \subset \mathbb{A}^2.$
 - (e) $\{(z, w), \sin z = 0, \cos w = 3, |z|^2 + |w|^2 < 100\} \subset \mathbb{A}^2$.
 - (f) The group $SL_2(\mathbb{C})$ of 2×2 complex matrices of determinant 1.
- *2*. (a) Let $V_1 = V(f_1, ..., f_k)$ and $V_2 = V(g_1, ..., g_m)$ be two affine varieties in \mathbb{A}^n . Prove that $V_1 \cup V_2$ is an affine variety by finding a finite list of polynomials that define it.
 - (b) Give an example of a countable collection of affine varieties whose union is not an affine variety.
 - 3. Let I be an ideal in a ring R. Show that the radical

$$\operatorname{rad}(I) = \{ f \in R, f^k \in I \text{ for some } k \}$$

is an ideal.

- 4. Let $V_1, V_2 \subset \mathbb{A}^n$ be two affine varieties, and let $I_1 = I_{V_1}$ and $I_2 = I_{V_2}$ be their associated radical ideals in $\mathbb{C}[x_1, ..., x_n]$.
 - (a) Show that $I(V_1 \cup V_2) = I_1 \cap I_2$. How does this compare to your answer for Q2(a)?

The sum of I_1 and I_2 , denoted $I_1 + I_2$, is the ideal generated by $I_1 \cup I_2$.

- (b) Show that $V(I_1 + I_2) = V_1 \cap V_2$.
- (c) It is not always true that $I_{V_1 \cap V_2} = I_1 + I_2$. Find a counter-example.
- 5. A \mathbb{C} -algebra is a ring R containing \mathbb{C} as a subring. A \mathbb{C} -algebra is finitelygenerated if there is a finite set of elements $r_1, ..., r_n \in R$ such the set $\mathbb{C} \cup \{r_1, ..., r_n\}$ generates R as a ring.
 - (a) Show that every finitely-generated \mathbb{C} -algebra is isomorphic to $\mathbb{C}[x_1, ..., x_n]/I$ for some n and some ideal I.

An element r of a ring R is *nilpotent* if $r^k = 0$ for some k, and a ring is called *reduced* if it contains no nilpotent elements (except for 0).

(b) Show that a ring R is the co-ordinate ring of a (complex) affine variety if and only R is a finitely-generated reduced \mathbb{C} -algebra.

Ed Segal

1. (i) Let $V_1, V_2 \subset \mathbb{A}^n$ be two affine varieties. Explain why there is an injective ring homomorphism:

$$\rho: \mathbb{C}[V_1 \cup V_2] \longrightarrow \mathbb{C}[V_1] \oplus \mathbb{C}[V_2]$$

Show that ρ is not surjective if $V_1 \cap V_2 \neq \phi$.

- (ii) Consider the *real* affine varieties $V_1 = V(y x^2), V_2 = V(y + 1)$ in $\mathbb{A}^2(\mathbb{R})$. Show that ρ is not surjective, even though $V_1 \cap V_2 = \phi$.
- (iii) Now prove that for any two complex affine varieties $V_1, V_2 \subset \mathbb{A}^n$, if $V_1 \cap V_2 = \phi$ then ρ is an isomorphism.
- 2. Let $V = V(y) \subset \mathbb{A}^2$ and $W = V(y x^2) \subset \mathbb{A}^2$. Write down a function $F: V \cup W \to \mathbb{C}$ such that $F|_V$ is regular and $F|_W$ is regular but F is not regular.
- 3. (a) Two possible definitions of a *Noetherian* ring R are:
 - (i) Every idea in R is finitely-generated.
 - (ii) R does not contain an infinite strictly increasing chain of ideals:

$$I_0 \subsetneq I_1 \subsetneq I_2 \varsubsetneq \dots$$

In the lecture notes it's proved that (i) implies (ii). Prove that (ii) implies (i).

- (b) Prove that $\mathbb{C}[V]$ is Noetherian for any affine variety V.
- 4. Prove that the decomposition of an affine variety into irreducible components is unique.
- 5. Is the intersection of two irreducible affine varieties always irreducible? Give a proof or counter-example.
- $\star 6 \star.$ Find the irreducible components of the following varieties:
 - (a) $V(xyz) \subset \mathbb{A}^3$
 - (b) $V(xy, yz, xz) \subset \mathbb{A}^3$
 - (c) $V(x^4 x^2 2) \subset \mathbb{A}^1$
 - 7. Find the irreducible components of $V(y^2 xy x^2y + x^3) \subset \mathbb{A}^2$.

Ed Segal

- 1. (a) Let $V = V(x^2 + y^2 + z) \subset \mathbb{A}^3$. Show that V is isomorphic to \mathbb{A}^2 .
 - (b) Let $V = V(y^2 y) \subset \mathbb{A}^2$ and $W = V(xy) \subset \mathbb{A}^2$. Construct a surjective regular map $F: V \to W$. Are V and W isomorphic?
- *2*. Let $F: V \to W$ be a regular map between two affine varieties, and let $F^*: \mathbb{C}[W] \to \mathbb{C}[V]$ be the corresponding map between their co-ordinate rings.
 - (a) Prove that if F is surjective then F^* is injective.
 - (b) If $p, q \in V$ are two distinct points, show that there is a regular function $f \in \mathbb{C}[V]$ such that $f(p) \neq f(q)$. Now prove that if F^* is surjective then F must be injective.
 - 3. (a) Is the converse to Q2(a) true? Is the converse to Q2(b) true?
 - (b) Use Q2(a) to prove that if $F: V \to W$ is a surjection, and V is irreducible, then W must be irreducible.
 - 4. A function $F : \mathbb{A}^n \to \mathbb{A}^m$ is called *affine* if it is the composition of a linear map and a translation, *i.e.* if $F : \mathbf{x} \mapsto A\mathbf{x} + \mathbf{b}$ for some matrix A and m-vector \mathbf{b} .
 - (a) Prove that every isomorphism $F : \mathbb{A}^1 \xrightarrow{\sim} \mathbb{A}^1$ is affine.
 - (b) Find an isomorphism $F: \mathbb{A}^2 \xrightarrow{\sim} \mathbb{A}^2$ which is not affine.
 - 5. Prove that \mathbb{A}^1 is not isomorphic to \mathbb{A}^2 .
 - 6. (a) Let $V = V(t^2 t) \subset \mathbb{A}^1$ and $W = V(x y, xy 1) \subset \mathbb{A}^2$. Write down an isomorphism between V and W.
 - (b) Now let $V \subset \mathbb{A}^n$ and $W \subset \mathbb{A}^k$ be two finite sets of the same size. Prove that V and W are isomorphic affine varieties. You may find Q1 on Sheet 2 helpful.

Ed Segal

- 1. Let V be an irreducible affine variety. Prove that:
 - (a) If $U_1, U_2 \subset V$ are any two non-empty Zariski open subsets then the intersection $U_1 \cap U_2$ is not empty.
 - (b) If $U \subset V$ is any non-empty Zariski open subset then the Zariski closure of U is V.

Now prove that if V is reducible both (a) and (b) are false.

- 2. (a) Let $S \subset \mathbb{A}^n$ be any subset, and let $I(S) \subset \mathbb{C}[x_1, ..., x_n]$ be the ideal of polynomials vanishing on S. Show that V(I(S)) is the Zariski closure of S.
 - (b) Find the Zariski closure of $S = \{(n, n), n \in \mathbb{Z}\} \subset \mathbb{A}^2$.
- 3. For each of the following rational functions in $\mathbb{C}(x, y)$ find their set of regular points.

(a)
$$\frac{y}{x^3 - x^2 y}$$
 (b) $\frac{x+1}{x^2 + xy + x + y}$

- 4. Let f be a polynomial in n variables and let U be the quasi-affine variety $U = \mathbb{A}^n \setminus V(f)$.
 - \star (a) \star Show that U is isomorphic to an affine variety in \mathbb{A}^{n+1} .
 - (b) Show that a rational function g/h is regular on U if and only if every irreducible factor of h divides f.
- 5. (a) Let $U \subset \mathbb{A}^n$ be Zariski open and let $F : U \to \mathbb{A}^k$ be a regular function. Show that if $W \subset \mathbb{A}^k$ is Zariski open then the pre-image $F^{-1}(W) \subset U$ is Zariski open.
 - (b) Let $F: U \to U'$ and $G: U' \to U''$ be regular functions between any quasi-affine varieties U, U', U''. Prove that $G \circ F$ is regular.
- 6. Let $V = V(y^2 x^3)$ and let U be the quasi-affine variety $V \setminus (0,0)$. Show that U is isomorphic to $\mathbb{A}^1 \setminus 0$.
- 7. This continues Sheet 3 Q1(b). Prove that the following two quasi-affine varieties in \mathbb{A}^2 are isomorphic:

$$U = V(y^2 - y) \setminus V(x) \qquad \qquad U' = V(xy) \setminus (0,0)$$

Ed Segal

- 1. (a) Let $F: U \xrightarrow{\sim} W$ is an isomorphism between two quasi-affine varieties. Prove that F induces an isomorphism between the rings of regular functions on U and W.
 - (b) Let U = A² \ (0,0), let W be an affine variety, and let F : U → W be a regular map. Show that F must be the restriction of some regular map : A² → W. Now use part (a) to prove that F cannot be an isomorphism. *Hint: the restriction map from* C[A²] to regular functions on U is an isomorphism.
- 2. (a) Let $V = V(y^2 x^3)$. Find an isomorphism between $\mathbb{C}(V)$ and $\mathbb{C}(t)$.
 - (b) Repeat (a) for $V = V(y^2 x^k)$ where $k \in \mathbb{N}$ is an odd number.
 - (c) What happens if k is even?
- ★3.★ Let $V = V(y x^2) \subset \mathbb{A}^2$. For each of the following two rational functions in $\mathbb{C}(x, y)$, say if it defines a rational function on V and if it does find the set of regular points.

(a)
$$\frac{y}{xy - x^3}$$
 (b) $\frac{1}{y - x}$

- 4. Let $V = V(xy z^2) \subset \mathbb{A}^3$ and let $\psi = y/z \in \mathbb{C}(V)$.
 - (a) Show that (1,0,0) is a regular point of ψ .
 - (b) Guess which points are not regular.
 - (c) Prove your guess is correct.
- 5. Let $V = V(y^2 x^3)$ and let $\psi = x/y \in \mathbb{C}(V)$. Prove that (0,0) is not a regular point of ψ .

Ed Segal

1. Define $F : \mathbb{A}^2 \dashrightarrow \mathbb{A}^2$ by $F(x, y) = \left(\frac{x}{xy-1}, \frac{xy-1}{x}\right)$.

- (a) What are the regular points of F? What is the image of F?
- (b) Does $F \circ F$ make sense?
- 2. Let $V = V(xy zw) \subset \mathbb{A}^4$ and consider the rational map $F: V \dashrightarrow \mathbb{A}^2$ given by:

$$(x, y, z, w) \mapsto (s, t) = \left(\frac{w}{y}, \frac{w}{z}\right)$$

- (a) Find the regular points of F.
- (b) Show that F is dominant.
- (c) Let $\phi = s/t \in \mathbb{C}(s, t)$.
 - (i) If $p \in V$ is a regular point of $F^*(\phi)$, does it follow that p is a regular point of F?
 - (ii) If p is a regular point of $F^*(\phi)$ and F, does it follow that F(p) is a regular point of ϕ ?
- 3. Define $F : \mathbb{A}^2 \to \mathbb{A}^2$ by $F(x, y) = (xy, xy^2)$. Show that F is a birational equivalence.
- 4. Prove Lemma 11.15 in the notes.
- 5. Let $V = V(xy z^2) \subset \mathbb{A}^3$.
 - (a) Let $F : \mathbb{A}^2 \to V$ be the map $F(s,t) = (s^2, t^2, st)$. Is F a birational equivalence?
 - (b) Find a birational equivalence between \mathbb{A}^2 and V.

Ed Segal

1. (a) Let $V \subset \mathbb{A}^n$ be an affine variety with $I_V = \langle f_1, .., f_k \rangle$, and fix a point $p \in V$. For $v \in \mathbb{C}^n$, show that:

$$(Df_i)_p(v) = 0, \ \forall i \in [1,k] \quad \iff \quad Dg_p(v) = 0, \ \forall g \in I_V$$

- (b) Let $f = y x^2$ and g = y, let $V = V(f,g) \subset \mathbb{A}^2$, and let p be the origin.
 - (i) Find the subspace:

$$\operatorname{Ker} Df_p \cap \operatorname{Ker} Dg_p \subset \mathbb{C}^2$$

- (ii) What is $T_p V$?
- 2. For each of the following varieties, find the dimension of T_pV for each point $p \in V$. Hence identify the singular points and state the dimension of V.
 - (a) $V = V(y^2 x^3 x^2) \subset \mathbb{A}^2$. (b) $V = V(z - \frac{1}{2}x^2 - \frac{1}{2}y^2, \ z - x - y) \subset \mathbb{A}^3$. (c) $V = V(x^2 + ty^2, \ s^3 - t^2) \subset \mathbb{A}^4$.

(In each case you may assume that V is irreducible and that the given polynomials generate I(V).)

- 3. (a) Let $f \in \mathbb{C}[x_1, ..., x_n]$ be a polynomial and let $\partial_i f$ denote its partial derivatives. Show that $\partial_i f$ doesn't lie in the ideal $\langle f \rangle$ unless $\partial_i f = 0$.
 - (b) Let $V \subset \mathbb{A}^n$ be an irreducible hypersurface. Prove that dim V = n-1.
- (a) Let V be an irreducible affine variety. Show that the two possible definitions of a non-singular point of V agree.
 - (b) Find the singular points of:
 - (i) $V(xz, yz, xw, yw) \subset \mathbb{A}^4$ (ii) $V(y - x^2, z - x^3) \cup V(y + z) \subset \mathbb{A}^3$
- 5. Identify \mathbb{A}^6 with the set of 2×3 matrices, and let $V \subset \mathbb{A}^6$ be the subset of matrices of rank ≤ 1 .
 - (a) Show that V is an affine variety.
 - (b) Compute the field $\mathbb{C}(V)$ and deduce the dimension of V. (No proofs required.)

Ed Segal

- *1*. (a) Suppose a point $p \in \mathbb{P}^2$ maps to $(x, y) \in \mathbb{A}^2$ under the first standard chart. Find the image of p under the other two standard charts. Are there any values of (x, y) for which this doesn't make sense, and if so why not?
 - (b) Let

$$\mathbb{V} = \mathbb{V}(x - y) = \{x : y : z, x = y\} \subset \mathbb{P}^2$$

What does \mathbb{V} look like? What does $\mathbb{P}^2 \setminus \mathbb{V}$ look like? (No proofs required!)

2. (a) Show that an invertible square matrix $A \in \operatorname{Mat}_{n \times n}(\mathbb{C})$ induces a function:

 $\widehat{A}:\mathbb{P}^{n-1}\longrightarrow\mathbb{P}^{n-1}$

Why does A have to be invertible? For which matrices is \widehat{A} the identity function?

(b) For any three distinct points $p_0, p_1, p_2 \in \mathbb{P}^1$ show that there is a function \widehat{A} as in part (a) such that:

$$\widehat{A}(p_0) = 0:1, \quad \widehat{A}(p_1) = 1:0, \quad \widehat{A}(p_2) = 1:1$$

- 3. For each of the following projective varieties in \mathbb{P}^2 write down the three corresponding affine varieties in \mathbb{A}^2 that we get by intersecting with the three standard charts. What does each projective variety look like?
 - (a) $\mathbb{V}(xyz)$
 - (b) $\mathbb{V}(y^2 z x^3)$

(c)
$$\mathbb{V}(x^2y - xz^2, xy^2 - yz^2)$$

- 4. For the following affine hypersurfaces in \mathbb{A}^n write down their projective completion in \mathbb{P}^n . In each case give a brief description of the set of additional points in the \mathbb{P}^{n-1} 'at infinity'.
 - (a) $V(x^2 y^2 1) \subset \mathbb{A}^2$
 - (b) $V(x^2 + y^2 + z^2 + xyz + 1) \subset \mathbb{A}^3$
 - (c) $V(xy-z^2) \subset \mathbb{A}^3$
- 5. (a) Show that the union of two projective varieties is a projective variety.
 - (b) Find a countable set of projective varieties whose union is not a projective variety.
 - (c) Show that the intersection of any set of projective varieties is a projective variety. *(Hint: affine cones.)*
- 6. (a) Let $\mathbb{V} = \mathbb{V}(x^2z + yz^2) \subset \mathbb{P}^2$, and let $V \subset \mathbb{A}^2$ be the intersection of \mathbb{V} with the standard chart $\{z \neq 0\}$. Is \mathbb{V} the projective completion of V?
 - (b) What do you think the projective completion of

$$V(xy+z, xy-z) \subset \mathbb{A}^3$$

is? Can you see any ambiguity here? Can you find a definition of 'projective completion' that doesn't rely on choosing polynomials?

Ed Segal

- 1. (a) Let $\mathbb{V} \subset \mathbb{P}^n$ be a projective variety and let $V \subset \mathbb{A}^n$ be the intersection of V with a standard chart. Prove that if \mathbb{V} is irreducible then V is irreducible.
 - (b) Find a projective variety $\mathbb{V} \subset \mathbb{P}^1$ such that \mathbb{V} is reducible, but the intersection of \mathbb{V} with either standard chart gives an irreducible affine variety. Repeat for $\mathbb{V} \subset \mathbb{P}^n$.
- 2. Let $\mathbb{V} \subset \mathbb{P}^n$ be a projective variety and let $V \subset \mathbb{A}^n$ be the intersection of V with one of the standard charts. Show that a subset $U \subset V$ is Zariski open iff $U = \mathbb{U} \cap V$ for some Zariski open subset $\mathbb{U} \subset \mathbb{V}$.
- 3. For each of the following projective varieties find the set of singular points. Say if they are irreducible *(no proofs required)*, and if so state their dimension.
 - (a) $\mathbb{V}(xz, yz) \subset \mathbb{P}^2$

(b)
$$\mathbb{V}(y^2z + x^3 + z^3) \subset \mathbb{P}^2$$

- (c) $\mathbb{V}(xyz w^3) \subset \mathbb{P}^3$
- 4. Let $V \subset \mathbb{A}^{n+1}$ be a cone and let $\mathbb{V} \subset \mathbb{P}^n$ be the corresponding projective variety. Suppose \mathbb{V} has no singular points. Does it follow that V has no singular points? If not what is the correct statement?
- 5. (a) Let $\Psi : \mathbb{A}^n \dashrightarrow \mathbb{P}^2$ be a rational map. Show that from Ψ we can construct three rational maps $\Phi_1, \Phi_2, \Phi_3 : \mathbb{A}^n \dashrightarrow \mathbb{A}^2$, and that a point is regular for Ψ iff it is regular for at least one of the Φ_i .
 - (b) Show that $(f_0, ..., f_k)$ and $(g_0, ..., g_k)$ define the same rational map $\mathbb{A}^n \dashrightarrow \mathbb{P}^k$ if and only if we have $f_i g_j = f_j g_i$ for all $i, j \in [0, k]$.
- $\star 6\star$. Let $\Phi: \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$ be the rational map $\Phi = xy: yz: xz$.
 - (a) Find the base-points of Φ .
 - (b) Describe the behaviour of Φ on the subvariety $\mathbb{V}(xyz) \subset \mathbb{P}^2$.
 - 7. (a) Let $F : \mathbb{P}^1 \to \mathbb{P}^1$ be a regular map, and assume 1:0 is not in the image of F. Show that F must be constant.
 - (b) How would you define a *regular map* from \mathbb{P}^1 to an affine variety? Now show that any such map must by constant.
 - (c) Let $U = \mathbb{P}^2 \setminus 0:0:1$. Sketch a proof that U is not isomorphic to any affine variety.

Ed Segal

1. Let

$$\mathbb{V} = \mathbb{V}(xz - y^2, \, yw - z^2, \, xw - yz) \ \subset \mathbb{P}^3$$

be the twisted cubic curve.

- (a) Prove that \mathbb{V} is isomorphic to \mathbb{P}^1 . (Follow Example 17.19 in the notes.)
- (b) Now express your isomorphism $\mathbb{V} \xrightarrow{\sim} \mathbb{P}^1$ in terms of the function field $\mathbb{C}(V)$, where V is the affine cone of \mathbb{V} .
- 2. Let $\mathbb{V} = \mathbb{V}(f) \subset \mathbb{P}^1 \times \mathbb{P}^1$ be the hypersurface defined by:

$$f(x, y, s, t) = x^2 t - y^2 s$$

Prove that \mathbb{V} is isomorphic to \mathbb{P}^1 .

- 3. (a) Let $f \in \mathbb{C}[x, y]$ be any homogeneous polynomial. Describe $\mathbb{V}(xf, yf) \subset \mathbb{P}^1$.
 - (b) Consider the following hypersurface of bidegree (2,3):

$$\mathbb{V} = \mathbb{V}(x^2s^3 + y^2t^3) \subset \mathbb{P}^1 \times \mathbb{P}^1$$

Write down a projective variety in \mathbb{P}^3 which is isomorphic to \mathbb{V} . (No proofs required.)

4. Let $\mathbb{B} = \mathbb{V}(xt - ys) \subset \mathbb{A}^2 \times \mathbb{P}^1$ be the blow-up of \mathbb{A}^2 at the origin, and let $\pi : \mathbb{B} \to \mathbb{A}^2$ be the map:

$$\pi: (x, y, s:t) \mapsto (x, y)$$

- (a) Show that π is a birational equivalence.
- (b) Let $\Psi : \mathbb{A}^2 \dashrightarrow \mathbb{P}^1$ be the rational map $\Psi = x^2 : (y^2 x^5)$. Find a regular map $F : \mathbb{B} \to \mathbb{P}^1$ which agrees with Ψ on the set $\mathbb{B} \setminus \mathbb{V}(x, y)$.
- (c) Try part (b) again but set $\Phi = x^3 : (y^2 x^5)$ instead. Can you still do it?
- 5. Let $\pi : \mathbb{B} \to \mathbb{A}^2$ be the blow-up of \mathbb{A}^2 at the origin, and for a hypersurface $V \subset \mathbb{A}^2$ let $\mathbb{W} \subset \mathbb{B}$ denote the proper transform of V. For the following examples, find equations for \mathbb{W} in $\mathbb{A}^2 \times \mathbb{P}^1$ and find the subset $\pi^{-1}(0,0) \cap \mathbb{W}$.

(a)
$$V = V(xy(x+y))$$

(b) $V = V(y^2 - x^3 - x^2)$

6. Let

$$\mathbb{B} = \mathbb{V}(xt - ys, \, xu - zs, \, yu - zt) \subset \mathbb{A}^3 \times \mathbb{P}^2$$

be the blow-up of \mathbb{A}^3 at the origin, and let $\pi: \mathbb{B} \to \mathbb{A}^3$ be the projection:

$$\pi: (x, y, z, s: t: u) \mapsto (x, y, z)$$

Now let $V = V(xy - z^2) \subset \mathbb{A}^2$. By looking in charts verify that

$$\pi^{-1}(V) = \mathbb{V}(x, y, z) \cup \left(\mathbb{B} \cap \mathbb{V}(st - u^2)\right)$$

and check that the proper transform of V has no singular points.